§ 429.38 output power in watts (W), and, if missing from the nameplate, the output current in amperes (A). (iii) External power supplies that are exempt from no-load mode requirements under §430.32(w)(1)(iii): A statement that the product is designed to be connected to a security or life safety alarm or surveillance system component, the average active mode efficiency as a percent (%), the nameplate output power in watts (W), and if missing from the nameplate, the certification report must also include the output current in amperes (A) of the basic model or the output current in amperes (A) of the highest- and lowestvoltage models within the external power supply design family. [76 FR 12451, Mar. 7, 2011; 76 FR 24773, May 2, 2011, as amended at 76 FR 57899, Sept. 19, 2011] ## § 429.38 Non-class A external power supplies. [Reserved] ## § 429.39 Battery chargers. - (a) Sampling plan for selection of units for testing. (1) The requirements of §429.11 are applicable to battery chargers; and - (2) For each basic model of battery charger selected for testing, a sample of sufficient size shall be randomly selected and tested to ensure that— - (i) Any represented value of the estimated non-active energy ratio or other measure of energy consumption of a basic model for which consumers would favor lower values shall be greater than or equal to the higher of: - (A) The mean of the sample, where: $$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$ and, \overline{x} is the sample mean; n is the number of samples; and x_i is the ith sample; or. (B) The upper 97.5 percent confidence limit (UCL) of the true mean divided by 1.05, where: $$UCL = \overline{x} + t_{.975} \left(\frac{s}{\sqrt{n}} \right)$$ And \overline{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $t_{0.975}$ is the t statistic for a 97.5% one-tailed confidence interval with n-1 degrees of freedom (from Appendix A). and (ii) Any represented value of the estimated non-active energy ratio or other measure of energy consumption of a basic model for which consumers would favor higher values shall be less than or equal to the lower of: (A) The mean of the sample, where: